Department of Industrial Engineering & Decision Analysis [IEDA Seminar]  - Optimal No-Regret Learning in Repeated First-Price Auctions

10:30am - 12:00pm
Room 2302 (lift 17-18)

First-price auctions have very recently swept the online advertising industry, replacing second-price auctions as the predominant auction mechanism on many platforms for display ads bidding. This shift has brought forth important challenges for a bidder: how should one bid in a first-price auction, where unlike in second-price auctions, it is no longer optimal to bid one's private value truthfully and hard to know the others' bidding behaviors? In this paper, we take an online learning angle and address the fundamental problem of learning to bid in repeated first-price auctions. We discuss our recent work in leveraging the special structures of the first-price auctions to design minimax optimal no-regret bidding algorithms.

講者/ 表演者:
Zhengyuan Zhou
Stern School of Business, New York University

Zhengyuan Zhou is currently an assistant professor in New York University Stern School of Business, Department of Technology, Operations and Statistics. Before joining NYU Stern, Professor Zhou spent the year 2019-2020 as a Goldstine research fellow at IBM research. He received his BA in Mathematics and BS in Electrical Engineering and Computer Sciences, both from UC Berkeley, and subsequently a PhD in Electrical Engineering from Stanford University in 2019. His research interests lie at the intersection of machine learning, stochastic optimization and game theory and focus on leveraging tools from those fields to develop methodological frameworks to solve data-driven decision-making problems.

語言
英文
適合對象
教職員
研究生
主辦單位
Department of Industrial Engineering & Decision Analytics
新增活動
請各校內團體將活動發布至大學活動日曆。