Department of Industrial Engineering & Decision Analytics [Seminar] - Improving Data-Driven Decision-Making by Integrating Online and Offline Learning

11:00am - 12:15pm
Room 5583 (lift 29-30)

Machine learning is playing increasingly important roles in decision making, with key applications ranging from dynamic pricing and recommendation systems to personalized medicine and clinical trials. While supervised machine learning traditionally excels at making predictions based on i.i.d. offline data, many modern decision-making tasks require making sequential decisions based on data collected online. Such discrepancy gives rise to important challenges of bridging offline supervised learning and online interactive learning to unlock the full potential of data-driven decision making.

In this talk, we consider the challenge of reducing difficult online decision-making problems to well-understood offline supervised learning problems. Focusing on contextual bandits, a core class of online decision-making problems, we present the first optimal and efficient reduction from contextual bandits to offline regression. A remarkable consequence of our results is that advances in offline regression immediately translate to contextual bandits, statistically and computationally. We illustrate the advantages of our results through new guarantees in complex operational environments and experiments on real-world datasets. We also discuss the extensions of our results to more challenging setups, including reinforcement learning in large state spaces.

Event Format
Speakers / Performers:
Prof. David Simchi-Levi
Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT)

David Simchi-Levi is a Professor of Engineering Systems at MIT and serves as the head of the MIT Data Science Lab. He is considered one of the premier thought leaders in supply chain management and business analytics.

His Ph.D. students have accepted faculty positions in leading academic institutes including U. of California Berkeley, Carnegie Mellon U., Columbia U., Cornell U., Duke U., Georgia Tech, Harvard U., U. of Illinois Urbana-Champaign, U. of Michigan, Purdue U. and Virginia Tech.

Professor Simchi-Levi is the current Editor-in-Chief of Management Science, one of the two flagship journals of INFORMS. He served as the Editor-in-Chief for Operations Research (2006-2012), the other flagship journal of INFORMS and for Naval Research Logistics (2003-2005).

In 2023, he was elected a member of the National Academy of Engineering. In 2020, he was awarded the prestigious INFORMS Impact Prize for playing a leading role in developing and disseminating a new highly impactful paradigm for the identification and mitigation of risks in global supply chains.

He is an INFORMS Fellow and MSOM Distinguished Fellow and the recipient of the 2020 INFORMS Koopman Award given to an outstanding publication in military operations research; Ford Motor Company 2015 Engineering Excellence Award; 2014 INFORMS Daniel H. Wagner Prize for Excellence in Operations Research Practice; 2014 INFORMS Revenue Management and Pricing Section Practice Award; and 2009 INFORMS Revenue Management and Pricing Section Prize.

He was the founder of LogicTools which provided software solutions and professional services for supply chain optimization. LogicTools became part of IBM in 2009. In 2012 he co-founded OPS Rules, an operations analytics consulting company. The company became part of Accenture in 2016. In 2014, he co-founded Opalytics, a cloud analytics platform company focusing on operations and supply chain decisions. The company became part of the Accenture Applied Intelligence in 2018.

Recommended For
Faculty and staff
PG students
Department of Industrial Engineering & Decision Analytics
Post an event
Campus organizations are invited to add their events to the calendar.