Department of Chemistry Seminar - Computational electrochemistry from AIMD to AI²MD

10:30am - 12:00pm
Room 2504, 2/F (Lifts 25-26), Academic Building, HKUST

Speaker: Professor Jun CHENG

Institution:

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University

Hosted By: Professor Ding PAN

Abstract

It is known that electrode materials undergo dynamic structural changes at in-situ/in-operando conditions. Yet, the majority of computational studies only consider the static structures of electrode materials. When the materials are submerged in liquid solution, dynamic solvation effects are often completely ignored, or treated with dielectric continuum models, often lacking validation. The situations are about to change. Thanks to the latest development of in-situ experimental techniques and state-of-the-art computational methods, dynamics of electrode materials has recently drawn more and more attentions in many research areas. In this talk, I will present our recent progress on modeling dynamic catalysis and electrochemistry using ab initio molecular dynamics (AIMD). The high computational cost of AIMD however limits its application to small model systems consisting of hundreds of atoms at timescale of tens of ps. While, the latest development of AI accelerated AIMD (AI2MD) significantly increases the size and timescale, showing great promise for in situ modeling of realistic electrochemical systems.

 

About the speaker

Jun Cheng received his PhD in theoretical chemistry from the Queen’s University Belfast in 2008. He spent five years at University of Cambridge as a postdoc in theory sector in chemistry, and a junior research fellow at Emmanuel College. He is currently a Professor at College of Chemistry and Chemical Engineering, Xiamen University. His research interests are computational electrochemistry and theoretical catalysis. In particular, his group focuses on developing computational methods combining electronic structure theory, machine learning potential and molecular dynamics to simulate electrochemical interfaces and catalyst dynamics. He has been awarded the National Science Fund for Distinguished Young Scholars. He is an Associate Editor of The Journal of Chemical Physics, and has received the Alexander Kuznetsov Prize for Theoretical Electrochemistry of the International Society of Electrochemistry.

適合對象
研究生
教職員
主辦單位
化學系
聯絡方法
新增活動
請各校內團體將活動發布至大學活動日曆。